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The Generalized Rank Annihilation Method (GRAM) is a second-order calibration method that is used
in chromatography to quantify analytes that coelute with interferences. For a correct quantification, the
peak of the analyte in the standard and in the test sample must be aligned and have the same shape

Keywords: (i.e., have a trilinear structure). Variations in retention time and shape between the two peaks may cause
GRAM the test sample to behave as an outlier and produce an incorrect prediction. This situation cannot be
HPLC,'DAD detected by checking the coincidence of the recovered spectrum with the known spectrum of the analyte
g:ct(l)l:;_or der because the spectral domain is not affected. It cannot be detected either by checking if the recovered
Trilinearity profile is correct (i.e., unimodal and positive). Several plots are presented to detect such outliers. The first

plot compares the particular elution profiles in the standard and in the test sample that are recovered
by least-squares regression from the spectra estimated by GRAM. The calculated elution profiles from
both peaks should coincide. A second plot uses the elution profiles and spectra calculated by GRAM to
define the vector space spanned by the interferences. The measured peaks in the standard and in the
test sample are projected onto the space that is orthogonal to the space spanned by the interferences.
These projections are proportional (up to the noise) if data are trilinear. The proportionality is checked
graphically from the first singular vector of the projected peaks, or from the plot of the orthogonal signal
versus the net sensitivity. The use of these graphs is shown for simulated data and for the determination

of 4-nitrophenol in river water samples with liquid chromatography/UV-Vis detection.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Generalized Rank Annihilation Method (GRAM) is an algo-
rithm for the qualitative and quantitative analysis of second-order
bilinear data. An exhaustive bibliographic revision of GRAM and
applications to different analytical techniques can be found in Ref.
[1]. In chromatography GRAM is used to quantify analytes that
coelute with unexpected interferences in complex samples and also
in some high speed GC x GC analyses [2] and parallel column liquid
chromatography analyses [3] in which full resolution is sacrificed
to obtain other benefits, such as less time of analysis. GRAM only
requires one calibration standard and does not make any assump-
tions with respect to the shape of the underlying profiles in the
overlapped chromatographic peaks. For each component that is in
the peak of the test sample and in the peak of the calibration stan-
dard, GRAM gives its elution profile, its spectrum and the relative
concentration test/calibration. This ability to quantitate an analyte
in the presence of interferences that are in the test sample but notin
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the calibration standard is known as the second-order advantage,
and is obtained with bilinear second-order data. In chromatogra-
phy, these data are obtained by recording a multivariate signal over
time such as an UV-Vis spectrum (as it is done in HPLC-DAD) or a
mass spectrum (as it is done in GC-MS). The peak of interest is
then a two-dimensional data array, where the first dimension is
time and the second is detection channel. These type of data can
also be obtained by recording another elution profile, as it is done in
GC x GC, but for simplicity we will focus on data from an HPLC-DAD
system.

The results of GRAM for chromatographic data (i.e., predicted
spectra, profiles and concentrations) may be degraded by the
instrumental noise (specially heteroscedastic noise), the similarity
of elution profiles (low chromatographic resolution between the
analyte and the interferences), the similarity of spectra (low spec-
tral selectivity) and the similarity of the concentration ratios in the
standard and the test sample. In addition, predictions are affected
by the wrong selection of the number of systematic contributions
in the data and by data inconsistencies such as run-to-run time
shift and peak broadening. Small non-linearities in the responses
will also increase error if the concentration of the analyte in the test
sample differs greatly from the concentration in the standard [4].



1148 J. Ferré, E. Comas / Talanta 83 (2011) 1147-1157

And finally, although GRAM can theoretically handle any number
of overlapped constituents, in reality the predictions are degraded
as more interferences must be modeled due to the reduction of the
net signal-to-noise ratio and the increase in analyte interactions
and other potential sources of non-linearity. Several studies have
shown how these factors influence de GRAM results. [2,5-7].

The mentioned problems are not unique of GRAM. Most first-
and second-order calibration methods also suffer from them. For-
tunately, some problems can be prevented. For example, matrix
effects can be reduced with standard addition [3,7-12], and time
shift can be corrected with rank alignment algorithms [13]. Others
are minimized by the fact that GRAM is based on latent variables,
which increases the robustness of the results to slight deviations
from the ideal behavior. However, the list of causes that may
degrade the prediction is still large and the analyst needs to be
confident that GRAM can give correct predictions before it is used
in daily analyses.

Like in univariate and multivariate calibration, confidence in the
GRAM predictions is gained through validation and outlier diagnos-
tics. Validation checks that the defined analytical procedure (here
based on GRAM) can correctly analyze future samples of similar
matrix. Outlier diagnostics warn the analyst whether the new data
deviates from what was validated and that the predictions are not
reliable.

The use of GRAM is often validated by comparing its predic-
tions with the result of analyzing representative samples with an
alternative, more time-consuming, method of analysis [2,10,14,15]
or by recovery essays with spiked samples [16]. However, like in
other types of calibration, validation alone may not provide suffi-
cient confidence in the predictions of future samples. Despite the
method has been validated, a test sample may behave different than
expected. The sample may belong to a different population than
the validation samples, have extreme values or suffer from some
gross error of the analytical procedure that leads to a misleading
instrumental response. On top of that, GRAM calculates a model
for each test sample so previously successful models do not guar-
antee that the new model calculated for the next test sample will
be successful. Each new sample requires the number of factors in
the GRAM model to be decided, and preprocessing algorithms (e.g.,
for retention time correction) be applied with the settings that are
adequate for that sample. This is different from univariate calibra-
tion and multivariate calibration, where the model is validated and
used for predicting a large number of samples until model updating
or model transfer is needed. Hence, outlier diagnostics are needed
to flag if the validated method with GRAM can fail with the new
sample.

Outliers in GRAM are easily detected when the input measure-
ments are unrealistic, when the predictions are clearly erroneous
out of the expected range (e.g., negative concentrations) and when
the calculated profiles lack physical meaning (i.e., two maxima in
one elution profile). The special concern is for those outliers whose
predictions are reasonable (i.e., in the expected range of values) but
biased. It also important to note one important difference between
outliers in GRAM and outliers in multivariate calibration. In mul-
tivariate calibration, a sample is an outlier if interferences that
were not included in the standards contribute to the instrumen-
tal response. In GRAM such a sample is not an outlier because the
model is calculated with the test sample and the standard together.
The signal of the interferences is modeled and quantification is pos-
sible as long as the selectivity is sufficient in both orders (i.e., the
elution profile and the spectrum of the analyte are different enough
from the profiles and spectra of the interferences).

The main reason for a sample be an outlier in GRAM is to devi-
ate from the trilinearity requirement described in Eqgs. (1) and (2)
in Section 2. Trilinearity involves that: (i) the measured peak can
be bilinearly decomposed as a sum of contributions of the different

analytes and (ii) the elution profile and the spectrum of the ana-
lyte of interest are the same in the standard and in test sample,
except for a scaling factor related to the concentration. Causes of
deviations are irreproducibility of the profiles on both dimensions,
deviations from linearity due to matrix effects, non-rank additivity
[17]and non-bilinearity [17]. The latter two are not usually encoun-
tered for second-order instruments that are known to yield bilinear
data, such as HPLC-DAD. Matrix effects can be handled by stan-
dard addition. Hence, the most common signal inconsistencies are
reduced to variations in the shape of the profiles on both dimen-
sions. When the second dimension corresponds to spectroscopic
measurements, which are relatively highly repeatable, the main
signal inconsistencies reduce to time shift and peak shape variation.

The simplest and most used outlier detection diagnostic in
GRAM is to verify that the predicted concentrations and estimated
elution profiles and spectra are physically realistic [2,3,7,15,18].
The predicted concentrations should be in the validated range of
concentrations. The estimated elution profiles should be unimodal
and non-negative over the considered time window. The estimated
spectra should be non-negative and like the spectra obtained from
measuring the pure analytes. The degree of coincidence can be
checked, for example, with the correlation coefficient [2]. When
these requirements are met, the confidence that the GRAM predic-
tions are valid is high [2,18]. However, these comparisons are not
always sufficient. Apparently correct elution profiles and spectra
can be obtained even when the data are not trilinear and the pre-
diction errors are large. Other outlier diagnostics check whether
the peaks follow the trilinear model in Egs. (1) and (2). A first mea-
sure of lack of trilinearity is given by the difference between the
measured peak and the predicted peak. Large systematic differ-
ences indicate bad model fit either because the number of factors
in GRAM is underestimated or because the data lacked trilinear-
ity. Random differences between the two matrices are considered
to indicate accuracy of the concentration estimate [19]. However,
these differences evaluate the fit of the whole chromatographic
peak and not the specific analyte we are quantifying. Hence, resid-
uals may be non-random but predictions for the analyte of interest
be accurate. A related option is to project one peak onto the space
spanned by the rows and columns of the other peak [20]. The pro-
jection should recover the projected peak within the noise. This
method is limited when the two peaks contain different interfer-
ences. Although the sum peak may be used to span the calibration
space, small deviations from trilinearity are still difficult to detect.
A third tool is to compare the chemical rank of the augmented
matrices by joining the calibration and test sample matrices both
column-wise and row-wise [21]. Their rank is the same if the data
are trilinear. Evaluating a significant increase in rank is sometimes
difficult because small non-linearity is distributed over the relevant
eigenvectors/eigenvalues. Recently, a visual criterion was proposed
to assess the trilinearity of HPLC-DAD data and find the correct
number of factors to calculate a GRAM model [22]. This criterion
is only partially related to the quality of the predictions and is one
more to add to the diagnostics pool.

This paper presents another graphical criterion for detecting
outliers in GRAM for second-order HPLC-DAD data. It is specially
suited when the measurements along the second axis are satis-
factorily accurate and most signal inconsistencies (responsible for
outliers) are due to shifts along the time axis.

2. Theory
2.1. Notation
Boldface uppercase letters represent matrices, boldface low-

ercase letters indicate column vectors and italic letters indicate
scalars. Superscripts ‘T, ‘—1’ and ‘+’ indicate transposition, inverse
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and Moore-Penrose pseudoinverse, respectively. Column vectori-
sation of a matrix is indicated by ‘vec’. A ‘hat’, e.g., H, indicates
reconstructed/predicted data when it is needed to differentiate
them from the measured or underlying data. The analyte of interest
is designated as ‘analyte k'. I is the identity matrix of appropriate
size.

2.2. Model assumptions

In HPLC-DAD, the chromatogram of an analyzed sample is a
time x wavelength matrix of responses obtained by measuring
spectra over time. From that chromatogram, the data matrix R;
(J1 xJ») of the peak of interest is extracted. This peak contains the
analyte of interest to be quantified plus unknown interferences that
coeluted with the analyte. GRAM uses as a calibration standard a
single data matrix R¢ (of the same size as R¢) with a known con-
centration of the analyte of interest (c.). Rc can be obtained either
by analyzing a pure standard, or by analyzing an aliquot of the
test sample after adding a known amount of the analyte (standard
addition).

In GRAM it is assumed that both peaks, R; and Ry, are the sum of
responses of each constituent, and that the response of each con-
stituent can be factored out as the product of a column (x) and row
(y) profile. It is also assumed that the constituents in the sample do
not interact (i.e., the profiles of one constituent are independent on
the presence of the other constituents). These assumptions can be
written as:

K

Re =) ceiXiyp = XCY' (1)
k=1
K
R; = th,kaYE = XCY! (2)
k=1

For convenience, the sum is over the total number of con-
stituents K present both in R. and R;. If a particular constituent
is not present in Rc (or in Ry), its corresponding concentration c.
(or c¢) is zero. In matrix notation, X (J; x K) and Y (J x K) contain,
in columns, the profiles x and y of the K constituents and the diag-
onal matrices C. (K x K) and C; (K x K) contain the concentrations.
With this convention, for example, if R; contains the same con-
stituents as R¢ plus one interferent, all the diagonal elements of C¢
are nonzero and the element of C. corresponding to that interfer-
ent is zero. Other systematic sources of variation, such as a baseline,
can also be introduced in X and Y as analytes.

2.3. The GRAM algorithm

Different GRAM algorithms have been proposed. The one used
here is based on Sanchez and Kowalski [20] and Faber et al. [23].
The steps in GRAM are:

(1) Calculation of the sum matrix R
R=oR: +R¢ (3)

where « is a weight parameter that can be optimized to

reduce prediction bias. By default, =1 will be used here.

This sum matrix gathers in one place all the profiles so that

step 2 below can model all those contributions. Note that

R=aXC YT + XC YT = X(aCc + C¢)YT =HYT where the columns of

H are the elution profiles in X multiplied by the concentration.
(2) Singular value decomposition (SVD) of R:

R=USV' +E (4)

where the matrices of singular vectors (U,V) and singular val-
ues (S) have been truncated for F relevant factors and E is the
matrix of residuals. Ideally, F should be equal to the number
of systematic variations in R, i.e., equal to the total number of
analytes K.

(3) Solution of the eigenvalue problem:

(STIWUTRVV)T = T® (5)

where ® (F x F) is a diagonal matrix of eigenvalues and T is the
matrix of eigenvectors.

(4) Recovery of the elution profiles H (J; x F) and the spectral pro-
files ¥ (J x F):

H = UST (6)
Y=vr!) 7)

Note that the columns in H and Y are not necessarily in the same
order as in Egs. (1) and (2). Also, the scale is undetermined.
Usually, the spectral profiles are normalized and the scaling
constant is introduced in H.

(5) The eigenvalue in & that corresponds to the analyte k, @k,
is the ratio between the concentration of analyte k in R, and
the concentration of that analyte in R, ci)k = Ct 1/ Ce k + QCc k- BY
inserting the known concentration of analyte k in the standard,
the predicted concentration of analyte k is:

N oC, k@l
Cek = —= (8)
1- @,

Note that the eigenvalue @k that corresponds to the analyte
k is not necessarily the kth diagonal element of ®. In order to
know what eigenvalue corresponds to the analyte, the columns
of ¥ must be compared with the spectrum of analyte k measured
from a pure standard.

2.4. Outlier detection

Outlier detection is based on testing the trilinearity of the mea-
sured peaks. Two methods are presented here.

The first method is based on recovering the individual elution
profiles in Rc and Re. The profiles in H (Eq. (6)) are a compromise fit
of the true profiles in Rc and R and do not inform about the particu-
lar profiles in each matrix. Since the spectral domain is not affected
by deviations in the time domain, ¥ (Eq. (7)) is a good estimation of
the spectra in both measured peaks and can be used to obtain the
particular elution profiles by solving Eqgs. (1) and (2):

l:Ic = Rc(?Jr)T (9)

A = R(Y) (10)

If Rc and Ry are trilinear, the columns in H, He and H; are all mul-
tiple (the concentration) of the same underlying profiles X. This
can be seen by plotting the normalized columns of H, H and H.
If they coincide this will increase the reliability of the predicted
concentrations. If they do not coincide, the test sample behaves
as an outlier because of, for example, elution time shift or peak
broadening. Model underfitting can also be detected with this plot.

The second method is a variation of the previous one, but focuses
on how the prediction is calculated. It is based on the idea of the net
analyte signal (NAS), [24] that is the part of the measured response
that is used for prediction. The NAS of analyte k can be calculated
for both the calibration sample and the test sample as

R: = PuRPy (11)

R, = PyR.Py (12)
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where ﬁc and ﬁt are the peaks recovered from the calculated pro-
files:

~ T

R. = ANY (13)

R = AOY (14)

with ® + oIl = Iand Py and Py are the projection matrices defined
as

Py=1-H_ A", (15)
Py=1- ?,kYtk (16)

where H_; and Y_; are H and Y without the column of analyte
k. Py projects the columns of the peak onto the subspace that is
orthogonal to the subspace spanned by H_j (the profiles of the
interferences). Hence, at every wavelength, only the part of the
elution profile of analyte k that cannot be described as a linear com-
bination of the profiles in I:Lk remains. This signal is unique for the
analyte and can be used for quantification. Similarly, the columns
of Y_j span the subspace of the spectra of the interferences. Py
projects the rows of the peak onto the subspace that is orthogonal
to the subspace spanned by Y_,. At every retention time, only the
part of the spectrum of analyte k that is not a linear combination
of the spectra in Y_; remains. Note that Py and Py are also valid
if H_, and Y_j are not the pure profiles of the interferences but a
linear combination of them because they span the same vectorial
subspace.
R_ and R; have rank 1 and are proportional

(17)

so that the predicted concentration ¢; can be found by inserting the
known concentration of the standard c in the prev10us equatlon
The NAS cannot be used to detect outliers because R and Rt are
calculated from H and Y only and any deviations from trilinearity
are already embedded in H and Y. However, replacing in Eqs. (11)
and (12) the fitted Rc and R; by the measured peaks:

R{ = PyRcPy
R’ = PuRPy

(18)
(19)

gives the part of the measured peaks that is orthogonal to the space
spanned by the interferences. This part includes the NAS plus the
projection of the error:

R: = Py(Rc + Ec)Py = R +E; (20)
R; = Py(Rc + Eo)Py = R +E; (21)

@)
0.09f

Signal

Time step
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If R and Ry are trilinear and the sufficient number of factors has
been selected, E? and E{ will be random and small, and R{ and R}
will be almost proportional because the NAS signal will dominate
in Egs. (20) and (21). If Rc and R; are not trilinear, E¢ and E{ will be
larger and different, and the difference between R{ and R¢ will be
systematic. This difference can be easily observed from the SVD of
Rf and R¢.

R: = UV + Ec (22)

R = USiV;" +E; (23)

By defining u, ug, V¢, V¢ as the first column of U, Ue, V¢ and
V¢, respectively, if data are trilinear, u; and u, should coincide, and
v; and v¢ should coincide. This gives confidence to the predicted
concentrations. Otherwise, the test sample peak R; can be flagged
as an outlier.

The use of these diagnostics is commented below for two cases:
(a) when data are trilinear, (b) when the lack of trilinearity is due
to time shift.

3. Experimental
3.1. Simulations

Egs. (1) and (2) were used to simulate a pure chromatographic
peak for the standard (R¢) and an overlapped peak for the test
sample (R;). The elution profiles (X) and normalized spectra (Y)
are shown in Fig. 1. Rc was simulated with diag(C:)=[1.500]
where diag means the elements in the diagonal. This is a pure
peak with the analyte at concentration 1.5. R; was simulated with
diag(C;)=[110.5]. This peak contains the analyte at concentration
1, an overlapped interference and a small baseline drift. Note that
R and R; fulfill the trilinearity requirement because X and Y are
the same. To simulate retention time shift, a new R was calcu-
lated with the same Y and C; as the previous R; but with profiles
in X centered at three time steps earlier. Considering that in the
chromatograms described in the measured data section, a spec-
trum was recorded every 0.4 s, three time steps correspond to 1.2 s.
Such time shifts, and even larger, are possible in routine mea-
surements especially for compounds with large retention times.
White noise (0.1% in relation to the maximum of the peak) was
finally added to every simulated matrix. Fig. 2 shows the trilin-
ear peaks of the calibration standard R. and of the test sample R;.
The shifted peak (not shown) looks like R; but three time steps
earlier.

(0) 0.3

0.2

Signal

0.1

220 230 240 250 260 270 280 290
Wavelength (nm)

Fig. 1. (a) Simulated elution profiles. (b) Simulated normalized spectra. (—) Analyte, (— —) interference, (®—@®) baseline.
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0.025 |
0.02

0.015

Signal

0.01
0.005
0

260

240
Wavelength (nm)

Time step 50 220

Fig. 2. (a) Simulated calibration standard peak. (b) Simulated test sample peak.

3.2. Measured data

Data from a previous study was used. The objective is the deter-
mination of 4-nitrophenol in a river water sample from the Ebre
river (Spain). The experimental details are described in Ref. [16].
Briefly, a river water sample free of 4-nitrophenol (the original
study included also other analytes) was collected and spiked at
1.01 ppb of 4-nitrophenol to produce a test sample. The calibra-
tion standard was another aliquot of that water sample spiked a
5.07 ppb of the analyte. The samples were submitted to HPLC-DAD
analysis after solid-phase extraction (SPE). Sample chromatograms
are plotted in Fig. 3 in Ref. [16].

All calculations were performed with subroutines made in
house for Matlab (MathWorks, MA, USA).

4. Results and discussion
4.1. Simulations

The system R. and R; represents a probable quantification sit-
uation: R¢ is a pure peak of the analyte (easily available from a
pure standard, probably one of the standards used for univariate
calibration) and R; is the peak of the analyte in the test sample
that unexpectedly coeluted with an interference. A small base-
line drift has also been added. The optimal model dimensionality
for this system is three because there are three systematic con-
tributions (analyte, interference and baseline). Fig. 3 shows the
estimated elution profiles (A) and the normalized spectra ), Egs.
(6) and (7), for the three-factors model. The spectrum of the ana-
lyte coincides with the underlying spectrum in Fig. 1(b). The elution
profile of the analyte coincides with the source profile (Fig. 1(a))

multiplied by the concentration in the sum matrix R, i.e., 2.5.
The recovered profiles and spectra of the interference and of the
baseline are different than those used for simulation. This is to
be expected because in GRAM, when two or more constituents
have the same ratio of concentrations between the standard and
the test sample, their columns in H and ¥ may be linear combi-
nations of the true underlying profiles. This happens here with
the interference and the baseline. They are both in R; but not in
R..

The first outlier test compares the elution profiles for the analyte
k in He and H;. In this case, the normalized profiles are not shown
because they coincide among them, and are also equal to the nor-
malized profile in Fig. 3. This indicates that the peak of analyte
satisfies the trilinearity condition.

Fig. 4(a) and (b) shows matrices R} and R}, that contain the part
of the signal in R and R; that is orthogonal to the profiles of the
interference and the baseline. This orthogonal signal includes the
NAS of the analyte of interest in both modes plus the projected
noise. Since noise is low and R and R are trilinear, E¢ and E; are
also small so R ~ ﬁ: and R ~ R:. Hence, noise apart, R{ and R}
are proportional if Rc and R; are trilinear. The proportionality can
be checked by approximating R and R by their first right and left
singular vectors, R: ~ ucsc Vc' and R} ~ uy s v¢T (Egs. (22) and
(23)). uc is the normalized version of the net elution profile at each
wavelength in R} and v, is the normalized version of the net spectral
profile at each retention time in R¢. Similarly, u; and v; are the
common net elution profile and net spectral profile in R}. Since R
and Ry are proportional, u. and u; coincide (Fig. 4(c)), and vc and v¢
coincide (Fig. 4(d)). This indicates that the trilinearity requirement
is fulfilled and gives confidence to the predicted concentration, that
in this case was 1.00.

(b)

i e
2 k=)
3] n
10 20 30 40 50 220 230 240 250 260 270 280 290
Time step Wavelength (nm)
Fig. 3. Trilinear simulated data. GRAM model with three factors. (a) Estimated elution profiles H (b) Estimated normalized spectra Y. (—) Analyte, (— —) interference, (@—@®)

baseline.
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(b) X 1073

£ 0N i
10 ! ,’7“‘“‘) e
F 5 JI’:‘:‘““‘\\\‘&‘:}\\ \:
g LTI
5
Time step 50 220 Wavelength (nm)
(d)

Singular vector

280

250 260 270 290

Wavelength (nm)

0.2 . .
220 230 240

Fig. 4. Trilinear simulated data. (a) Orthogonal signal for the analyte of interest in the calibration standard peak R} (b) Orthogonal signal for the analyte of interest in the test
sample peak Ry (c) Left singular vectors u. and u; from R and R; (d) Right singular vectors v, and v, from R} and R;.

Fig. 5(a) and (b) shows the predicted profiles when R; suffers
from time shift. Since the spectral mode is not affected by time
shift, the spectrum of the analyte is recovered correctly and coin-
cides with the one used for simulation. On the other hand, the time
mode is affected by time shift, and the underlying elution profiles
in Rc and R; do not coincide. Despite this, the recovered elution
profile of the analyte seems correct (positive and unimodal) except
for some small negative values from time step 35 to 50 that could
be attributed to a baseline variation in the recorded peak and be
ignored. In other words, the visual inspection of the recovered elu-

(a)
02}
©
c
9
Y0t
0 n

Time step

tion profile and spectrum of the analyte would not warn that R; is
an outlier. The elution profiles and spectra of the interference and
baseline can neither be used to detect this problem. The negative
partin the spectrum of the interference could be due to the fact that
these profiles are linear combinations of the true underlying pro-
files so these deviations from the ideal shape should not be taken
into account. For this system, the predicted concentration was 1.14,
a 14% error that would pass unnoticed.

Fig. 6 shows the elution profiles for the analyte of interest in
H., H; and H. The difference between them indicates that the test

{b)

Signal

-0.05 /
. /
X /
3 /
», 1
", ’
\
-0.15
220 230 240 250 260 270 280 290

Wavelength (nm)

Fig. 5. Time shifted simulated data. GRAM model with three factors. (a) Estimated elution profiles H. (b) Estimated normalized spectra Y.(-) Analyte, (— —) interference,

(®—®) baseline.
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Signal

10 20 30 40 50
Time step

Fig. 6. Normalized elution profile of the analyte in Hc (-), H; (— —) and H (@—@®).

sample is an outlier. Note how the profile H is a compromise of the
profiles in He and He. The outlying situation can also be detected
from the plots of the orthogonal signal. Since the underlying elu-
tion profile of the analyte in R. is not aligned with its profile in
R;, each profile has a different part that is orthogonal to the space
spanned by the profiles of the interference and the baseline. Hence,
R{ and R} (Fig. 7(a) and (b)) are no longer proportional (noise
apart) and one surface is shifted in time with respect to the other.

(a) 001

0.005 .-
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This can be better observed because the singular vectors u. and
u; are different (Fig. 7(c)), so R is flagged as an outlier. Note that
the orthogonal contribution in the spectral mode is not affected
because the time shift did not affect the spectra (Fig. 7(d)). After
R; has been flagged as an outlier, a time shift correction algorithm
could be used, that would reveal a shift of three time steps. Correc-
tion of this shift would lead to the results discussed in the previous
section.

4.2. Measured data

Fig. 8 shows the peaks of 4-nitrophenol in the standard and in
the test river water sample. The SVD of each peak separately indi-
cated that the peaks were not pure so quantitation with GRAM was
justified. Fig. 9 shows the chromatographic profiles and spectra
estimated by the GRAM model with three factors. The estimated
spectrum of the analyte perfectly matches the spectrum recorded
for 4-nitrophenol in a pure standard. This is used to identify what
of the three elution profiles corresponds to the analyte. The other
two spectra seem reasonable although they could be linear com-
binations of the true spectra. The elution profile of the analyte is
unimodal and mostly positive and seems correct. The agreement of
the spectrum and the satisfactory elution profiles could suggest, at
a first glance, that the prediction, that is 0.91 ppb, is reliable. The
outlier diagnostics, however, will flag the sample as an outlier.

Fig. 10(a) shows the elution profile of the analyte of interest
in He, H; and A. The separation between the profiles in H¢ and H;
indicate that R; is an outlier. Note also that the profile in H is more
similar to the profile in H. than the profile in He. This is because =1

. 260
240

507 220 Wavelength (nm)

Time step
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1 L

04 . . . . )
220 230 240 250 260 270 280 290
Wavelength (nm)

Fig. 7. Time shifted simulated data. (a) Rg, (b) R}. (c) The difference between the left singular vectors u. and u; from R{ and R{ highlight the time shift problem. (d) Right

singular vectors v. and v; from R and R;.
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Fig. 8. River water sample. (a) Measured 4-nitrophenol in the standard. (b) Measured 4-nitrophenol in the test sample.
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Fig. 9. River water sample. GRAM model with three factors. (a) Estimated elution profiles H. (b) Estimated normalized spectra ¥. The (x) indicate the reference spectrum of

the analyte obtained by measuring a pure standard of 4-nitrophenol.

was used in Eq. (3). Hence, R¢ (that is much larger than R;) domi-
nated in the sum matrix R and in the SVD in Eq. (4). If «=0.1 had
been used, the profile in H would be more similar to the profile in H;
than to the profile in Ac. R¢ and R} in Fig. 11(a) and (b) also lead to
the conclusion that R; is an outlier. Note that one surface is shifted
with respect to the other. The fact that u. and u; do not coincide in
Fig. 11(c) confirms this. Again, the spectral mode was not affected
by time shift and the singular vectors of R: and R} for the spectral
mode, v. and vy, agree. The time shift was corrected by moving the
time window of R; in the chromatogram of the test sample one unit

@)

Signal

-0.1 : .

9.3 9.4 9.5 9.6 9.7
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a time until the calculated profiles agreed. Other algorithms, such
as the one by Prazen et al. [13] could also be used. Fig. 12 shows
the elution profiles and spectra estimated by GRAM after the time
window for R; had been shifted six time steps with respect to the
time window in Rc. Again, the profile of 4-nitrophenol seems cor-
rect and its spectrum perfectly matches the reference spectrum of
this analyte. Fig. 10(b) now shows that the elution profiles for the
analyte of interest in He, B and A agree. The surfaces of Rt and
R{ in Fig. 13(a) and (b) are now similar, which is confirmed by the
match between u. and u; (Fig. 13(c)). These plots suggest that the
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Fig. 10. Normalized elution profile of 4-nitrophenol in H (-), H; (— —) and H (e—e) for the raw measured data (a) and after correcting the retention time shift (b).
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Fig. 11. River water sample (a) Ry, (b) R{. (c) Left singular vectors u. and u; from R; and R;. (d) Right singular vectors v. and v; from R} and R}.

trilinearity has bee improved and give confidence to the predicted
concentration, that was 1.04 ppb. This value was very close to the
known spiked amount 1.01 ppb. This result was considered accept-
able taking into account the dispersion of the results that the SPE
step can produce.

An additional plot can be derived from the projected matrices.
Fig. 14 shows the scatter plot of vec(R}) versus vec(S*), where S* is
the net sensitivity for analyte k defined as the NAS at unit concen-
tration, S* = ﬁ:/cc. The slope of the least-squares fitted line in this
plot is the predicted concentration. Fig. 14(a) corresponds to the
original, non-trilinear data. Time shift makes R{ not be a multiple
of S*, and the residuals are large and systematic. After correcting
the time shift (Fig. 14(b)), the residual are much smaller and the
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dispersion is mainly due to the noise in the data, which increases
the reliability of the predicted concentration.

The indicated plots can be also used to detect other sources of
non-trilinearity such as peak broadening. Peak broadening (i.e., the
peak of the analyte in test sample is aligned with the peak of the
standard but it is not a multiple of it) also increases prediction error,
but usually less than time shift because the shape of the elution
profile of the analyte does not vary excessively from one run to the
other. This case, although not shown here, can be detected with
the same reasoning than retention time shift. If the profile of the
analyte of interest in R is different than in R;, then Hc, A and A
will not coincide, R} and R} will not be proportional and R; will be
flagged as an outlier.
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Fig. 12. River water sample after correcting the time shift. GRAM model with three factors. (a) Estimated elution profiles H. (b) Estimated normalized spectra Y. The (x)
indicate the reference spectrum of the analyte obtained by measuring a pure standard of 4-nitrophenol.
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Fig. 13. River water sample after correcting the time shift. (a) R¢, (b) R. (c) Left singular vectors u. and u, from R and R{. (d) Right singular vectors v, and v, from R} and R;.

A similar behavior can also be observed in these plots when R¢
is not an outlier but the model is underfitted i.e., the GRAM model,
Eq. (4), is calculated with less factors than needed. In an underfit-
ted model, H and Y do not span the row and column spaces of Rc
and R; correctly. Hence, the calculated profiles often lack meaning
or it is difficult to recognize the spectrum of the analyte in ¥. This
is a warning for checking the GRAM model and see whether this
was caused by a shift in the elution profile (i.e., R; is an outlier)
or underfitting. Sometimes, however, the spectrum of the target
analyte can be identified in ¥ despite the model being underfitted.

vec (R,)

3 x103

vec (8%)

This may happen, for example, when the contribution of one the
components in R; is low. In that case, the analyte may be (erro-
neously) quantified. The proposed plots display that situation. If
the profile of the analyte has been identified, matrices H_; and Y_,,
can be constructed with the remaining columns of H and Y. In that
case, Py and Py will not completely remove the contribution of the
interferences, R¢ and R; will not be proportional (up to the noise
level) and the plot vec(R}) versus vec(S*), will reveal this situation.
Overfitting, on the other hand, does not increase prediction error
as much as underfitting does. Usually adding an extra factor leaves
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Fig. 14. River water sample. vec(R}) versus vec(S*). (a) Before correcting the time shift. (b) After correcting the time shift. In both cases, the slope of the fitted line is the

predicted concentration.
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the existing profiles mostly unchanged and adds a new one that
accounts for noise, or one of the existing profiles is split in two
similar profiles because of small data inconsistencies (for example,
slight non-linearity or variation of the peak shape). Note, for exam-
ple, that the GRAM model for 4-nitrophenol, after correcting the
shift, has two elution profiles with a very similar spectrum. This
may be indicating that the main sources of variation are two and
that the third profile was forced to come out because the model
was calculated with three factors. In fact, a GRAM model calculated
with only two factors yields a very similar profiles and spectra than
the model with three factors, and the prediction hardly changed
(1.04 ppb). Finally, note that although slight overfitting may not
affect the prediction, adding more factors than needed decreases
the NAS and decreases the signal-to-noise ratio because the NAS
must be orthogonal to more profiles. Hence, it is important to use
the best number of factors.

5. Conclusions

Outlier detection diagnostics are needed for the routine appli-
cation of GRAM. In HPLC-DAD analysis, retention time shift and
peak broadening are two important sources of outliers. Although
qualitative analysis may still be possible because the spectral
mode is not affected by the lack of trilinearity, quantitative
analysis may be seriously affected. Several tools for the detec-
tion of unreliable predictions have been presented. From them,
time shift, peak broadening and underfitting can be detected. It
is a good practice to monitor these plots for different number
of factors in the GRAM model before the quantitative result is
released.
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