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a b s t r a c t

The Generalized Rank Annihilation Method (GRAM) is a second-order calibration method that is used
in chromatography to quantify analytes that coelute with interferences. For a correct quantification, the
peak of the analyte in the standard and in the test sample must be aligned and have the same shape
(i.e., have a trilinear structure). Variations in retention time and shape between the two peaks may cause
the test sample to behave as an outlier and produce an incorrect prediction. This situation cannot be
detected by checking the coincidence of the recovered spectrum with the known spectrum of the analyte
because the spectral domain is not affected. It cannot be detected either by checking if the recovered
profile is correct (i.e., unimodal and positive). Several plots are presented to detect such outliers. The first
plot compares the particular elution profiles in the standard and in the test sample that are recovered
by least-squares regression from the spectra estimated by GRAM. The calculated elution profiles from

both peaks should coincide. A second plot uses the elution profiles and spectra calculated by GRAM to
define the vector space spanned by the interferences. The measured peaks in the standard and in the
test sample are projected onto the space that is orthogonal to the space spanned by the interferences.
These projections are proportional (up to the noise) if data are trilinear. The proportionality is checked
graphically from the first singular vector of the projected peaks, or from the plot of the orthogonal signal
versus the net sensitivity. The use of these graphs is shown for simulated data and for the determination

water
of 4-nitrophenol in river

. Introduction

The Generalized Rank Annihilation Method (GRAM) is an algo-
ithm for the qualitative and quantitative analysis of second-order
ilinear data. An exhaustive bibliographic revision of GRAM and
pplications to different analytical techniques can be found in Ref.
1]. In chromatography GRAM is used to quantify analytes that
oelute with unexpected interferences in complex samples and also
n some high speed GC × GC analyses [2] and parallel column liquid
hromatography analyses [3] in which full resolution is sacrificed
o obtain other benefits, such as less time of analysis. GRAM only
equires one calibration standard and does not make any assump-
ions with respect to the shape of the underlying profiles in the
verlapped chromatographic peaks. For each component that is in

he peak of the test sample and in the peak of the calibration stan-
ard, GRAM gives its elution profile, its spectrum and the relative
oncentration test/calibration. This ability to quantitate an analyte
n the presence of interferences that are in the test sample but not in

∗ Corresponding author. Tel.: +34 977 559564; fax: +34 977 558446.
E-mail address: joan.ferre@urv.cat (J. Ferré).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.08.007
samples with liquid chromatography/UV–Vis detection.
© 2010 Elsevier B.V. All rights reserved.

the calibration standard is known as the second-order advantage,
and is obtained with bilinear second-order data. In chromatogra-
phy, these data are obtained by recording a multivariate signal over
time such as an UV–Vis spectrum (as it is done in HPLC-DAD) or a
mass spectrum (as it is done in GC–MS). The peak of interest is
then a two-dimensional data array, where the first dimension is
time and the second is detection channel. These type of data can
also be obtained by recording another elution profile, as it is done in
GC × GC, but for simplicity we will focus on data from an HPLC-DAD
system.

The results of GRAM for chromatographic data (i.e., predicted
spectra, profiles and concentrations) may be degraded by the
instrumental noise (specially heteroscedastic noise), the similarity
of elution profiles (low chromatographic resolution between the
analyte and the interferences), the similarity of spectra (low spec-
tral selectivity) and the similarity of the concentration ratios in the
standard and the test sample. In addition, predictions are affected

by the wrong selection of the number of systematic contributions
in the data and by data inconsistencies such as run-to-run time
shift and peak broadening. Small non-linearities in the responses
will also increase error if the concentration of the analyte in the test
sample differs greatly from the concentration in the standard [4].
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nd finally, although GRAM can theoretically handle any number
f overlapped constituents, in reality the predictions are degraded
s more interferences must be modeled due to the reduction of the
et signal-to-noise ratio and the increase in analyte interactions
nd other potential sources of non-linearity. Several studies have
hown how these factors influence de GRAM results. [2,5–7].

The mentioned problems are not unique of GRAM. Most first-
nd second-order calibration methods also suffer from them. For-
unately, some problems can be prevented. For example, matrix
ffects can be reduced with standard addition [3,7–12], and time
hift can be corrected with rank alignment algorithms [13]. Others
re minimized by the fact that GRAM is based on latent variables,
hich increases the robustness of the results to slight deviations

rom the ideal behavior. However, the list of causes that may
egrade the prediction is still large and the analyst needs to be
onfident that GRAM can give correct predictions before it is used
n daily analyses.

Like in univariate and multivariate calibration, confidence in the
RAM predictions is gained through validation and outlier diagnos-

ics. Validation checks that the defined analytical procedure (here
ased on GRAM) can correctly analyze future samples of similar
atrix. Outlier diagnostics warn the analyst whether the new data

eviates from what was validated and that the predictions are not
eliable.

The use of GRAM is often validated by comparing its predic-
ions with the result of analyzing representative samples with an
lternative, more time-consuming, method of analysis [2,10,14,15]
r by recovery essays with spiked samples [16]. However, like in
ther types of calibration, validation alone may not provide suffi-
ient confidence in the predictions of future samples. Despite the
ethod has been validated, a test sample may behave different than

xpected. The sample may belong to a different population than
he validation samples, have extreme values or suffer from some
ross error of the analytical procedure that leads to a misleading
nstrumental response. On top of that, GRAM calculates a model
or each test sample so previously successful models do not guar-
ntee that the new model calculated for the next test sample will
e successful. Each new sample requires the number of factors in
he GRAM model to be decided, and preprocessing algorithms (e.g.,
or retention time correction) be applied with the settings that are
dequate for that sample. This is different from univariate calibra-
ion and multivariate calibration, where the model is validated and
sed for predicting a large number of samples until model updating
r model transfer is needed. Hence, outlier diagnostics are needed
o flag if the validated method with GRAM can fail with the new
ample.

Outliers in GRAM are easily detected when the input measure-
ents are unrealistic, when the predictions are clearly erroneous

ut of the expected range (e.g., negative concentrations) and when
he calculated profiles lack physical meaning (i.e., two maxima in
ne elution profile). The special concern is for those outliers whose
redictions are reasonable (i.e., in the expected range of values) but
iased. It also important to note one important difference between
utliers in GRAM and outliers in multivariate calibration. In mul-
ivariate calibration, a sample is an outlier if interferences that
ere not included in the standards contribute to the instrumen-

al response. In GRAM such a sample is not an outlier because the
odel is calculated with the test sample and the standard together.

he signal of the interferences is modeled and quantification is pos-
ible as long as the selectivity is sufficient in both orders (i.e., the
lution profile and the spectrum of the analyte are different enough

rom the profiles and spectra of the interferences).

The main reason for a sample be an outlier in GRAM is to devi-
te from the trilinearity requirement described in Eqs. (1) and (2)
n Section 2. Trilinearity involves that: (i) the measured peak can
e bilinearly decomposed as a sum of contributions of the different
3 (2011) 1147–1157

analytes and (ii) the elution profile and the spectrum of the ana-
lyte of interest are the same in the standard and in test sample,
except for a scaling factor related to the concentration. Causes of
deviations are irreproducibility of the profiles on both dimensions,
deviations from linearity due to matrix effects, non-rank additivity
[17] and non-bilinearity [17]. The latter two are not usually encoun-
tered for second-order instruments that are known to yield bilinear
data, such as HPLC-DAD. Matrix effects can be handled by stan-
dard addition. Hence, the most common signal inconsistencies are
reduced to variations in the shape of the profiles on both dimen-
sions. When the second dimension corresponds to spectroscopic
measurements, which are relatively highly repeatable, the main
signal inconsistencies reduce to time shift and peak shape variation.

The simplest and most used outlier detection diagnostic in
GRAM is to verify that the predicted concentrations and estimated
elution profiles and spectra are physically realistic [2,3,7,15,18].
The predicted concentrations should be in the validated range of
concentrations. The estimated elution profiles should be unimodal
and non-negative over the considered time window. The estimated
spectra should be non-negative and like the spectra obtained from
measuring the pure analytes. The degree of coincidence can be
checked, for example, with the correlation coefficient [2]. When
these requirements are met, the confidence that the GRAM predic-
tions are valid is high [2,18]. However, these comparisons are not
always sufficient. Apparently correct elution profiles and spectra
can be obtained even when the data are not trilinear and the pre-
diction errors are large. Other outlier diagnostics check whether
the peaks follow the trilinear model in Eqs. (1) and (2). A first mea-
sure of lack of trilinearity is given by the difference between the
measured peak and the predicted peak. Large systematic differ-
ences indicate bad model fit either because the number of factors
in GRAM is underestimated or because the data lacked trilinear-
ity. Random differences between the two matrices are considered
to indicate accuracy of the concentration estimate [19]. However,
these differences evaluate the fit of the whole chromatographic
peak and not the specific analyte we are quantifying. Hence, resid-
uals may be non-random but predictions for the analyte of interest
be accurate. A related option is to project one peak onto the space
spanned by the rows and columns of the other peak [20]. The pro-
jection should recover the projected peak within the noise. This
method is limited when the two peaks contain different interfer-
ences. Although the sum peak may be used to span the calibration
space, small deviations from trilinearity are still difficult to detect.
A third tool is to compare the chemical rank of the augmented
matrices by joining the calibration and test sample matrices both
column-wise and row-wise [21]. Their rank is the same if the data
are trilinear. Evaluating a significant increase in rank is sometimes
difficult because small non-linearity is distributed over the relevant
eigenvectors/eigenvalues. Recently, a visual criterion was proposed
to assess the trilinearity of HPLC-DAD data and find the correct
number of factors to calculate a GRAM model [22]. This criterion
is only partially related to the quality of the predictions and is one
more to add to the diagnostics pool.

This paper presents another graphical criterion for detecting
outliers in GRAM for second-order HPLC-DAD data. It is specially
suited when the measurements along the second axis are satis-
factorily accurate and most signal inconsistencies (responsible for
outliers) are due to shifts along the time axis.

2. Theory
2.1. Notation

Boldface uppercase letters represent matrices, boldface low-
ercase letters indicate column vectors and italic letters indicate
scalars. Superscripts ‘T’, ‘−1’ and ‘+’ indicate transposition, inverse
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nd Moore–Penrose pseudoinverse, respectively. Column vectori-
ation of a matrix is indicated by ‘vec’. A ‘hat’, e.g., Ĥ, indicates
econstructed/predicted data when it is needed to differentiate
hem from the measured or underlying data. The analyte of interest
s designated as ‘analyte k’. I is the identity matrix of appropriate
ize.

.2. Model assumptions

In HPLC-DAD, the chromatogram of an analyzed sample is a
ime × wavelength matrix of responses obtained by measuring
pectra over time. From that chromatogram, the data matrix Rt

J1 × J2) of the peak of interest is extracted. This peak contains the
nalyte of interest to be quantified plus unknown interferences that
oeluted with the analyte. GRAM uses as a calibration standard a
ingle data matrix Rc (of the same size as Rt) with a known con-
entration of the analyte of interest (cc). Rc can be obtained either
y analyzing a pure standard, or by analyzing an aliquot of the
est sample after adding a known amount of the analyte (standard
ddition).

In GRAM it is assumed that both peaks, Rc and Rt, are the sum of
esponses of each constituent, and that the response of each con-
tituent can be factored out as the product of a column (x) and row
y) profile. It is also assumed that the constituents in the sample do
ot interact (i.e., the profiles of one constituent are independent on
he presence of the other constituents). These assumptions can be
ritten as:

c =
K∑

k=1

cc,kxkyT
k = XCcYT (1)

t =
K∑

k=1

ct,kxkyT
k = XCtYT (2)

For convenience, the sum is over the total number of con-
tituents K present both in Rc and Rt. If a particular constituent
s not present in Rc (or in Rt), its corresponding concentration cc,k
or ct,k) is zero. In matrix notation, X (J1 × K) and Y (J2 × K) contain,
n columns, the profiles x and y of the K constituents and the diag-
nal matrices Cc (K × K) and Ct (K × K) contain the concentrations.
ith this convention, for example, if Rt contains the same con-

tituents as Rc plus one interferent, all the diagonal elements of Ct

re nonzero and the element of Cc corresponding to that interfer-
nt is zero. Other systematic sources of variation, such as a baseline,
an also be introduced in X and Y as analytes.

.3. The GRAM algorithm

Different GRAM algorithms have been proposed. The one used
ere is based on Sánchez and Kowalski [20] and Faber et al. [23].
he steps in GRAM are:

1) Calculation of the sum matrix R

R = ˛Rc + Rt (3)

where ˛ is a weight parameter that can be optimized to
reduce prediction bias. By default, ˛ = 1 will be used here.
This sum matrix gathers in one place all the profiles so that
step 2 below can model all those contributions. Note that

R = ˛XCcYT + XCtYT = X(˛Cc + Ct)YT = HYT where the columns of
H are the elution profiles in X multiplied by the concentration.

2) Singular value decomposition (SVD) of R:

R = USVT + E (4)
3 (2011) 1147–1157 1149

where the matrices of singular vectors (U,V) and singular val-
ues (S) have been truncated for F relevant factors and E is the
matrix of residuals. Ideally, F should be equal to the number
of systematic variations in R, i.e., equal to the total number of
analytes K.

(3) Solution of the eigenvalue problem:

(S−1UTRtV)T = T� (5)

where � (F × F) is a diagonal matrix of eigenvalues and T is the
matrix of eigenvectors.

(4) Recovery of the elution profiles Ĥ (J1 × F) and the spectral pro-
files Ŷ (J2 × F):

Ĥ = UST (6)

Ŷ = V(T−1)
T

(7)

Note that the columns in Ĥ and Ŷ are not necessarily in the same
order as in Eqs. (1) and (2). Also, the scale is undetermined.
Usually, the spectral profiles are normalized and the scaling
constant is introduced in Ĥ.

(5) The eigenvalue in �̂ that corresponds to the analyte k, ˆ̊
k,

is the ratio between the concentration of analyte k in Rt and
the concentration of that analyte in R, ˆ̊

k = ct,k/ct,k + ˛cc,k. By
inserting the known concentration of analyte k in the standard,
the predicted concentration of analyte k is:

ĉt,k = ˛cc,k
ˆ̊

k

1 − ˆ̊
k

(8)

Note that the eigenvalue ˆ̊
k that corresponds to the analyte

k is not necessarily the kth diagonal element of �. In order to
know what eigenvalue corresponds to the analyte, the columns
of Ŷ must be compared with the spectrum of analyte k measured
from a pure standard.

2.4. Outlier detection

Outlier detection is based on testing the trilinearity of the mea-
sured peaks. Two methods are presented here.

The first method is based on recovering the individual elution
profiles in Rc and Rt. The profiles in Ĥ (Eq. (6)) are a compromise fit
of the true profiles in Rc and Rt and do not inform about the particu-
lar profiles in each matrix. Since the spectral domain is not affected
by deviations in the time domain, Ŷ (Eq. (7)) is a good estimation of
the spectra in both measured peaks and can be used to obtain the
particular elution profiles by solving Eqs. (1) and (2):

Ĥc = Rc(Ŷ
+

)
T

(9)

Ĥt = Rt(Ŷ
+

)
T

(10)

If Rc and Rt are trilinear, the columns in Ĥ, Ĥc and Ĥt are all mul-
tiple (the concentration) of the same underlying profiles X. This
can be seen by plotting the normalized columns of Ĥ, Ĥc and Ĥt.
If they coincide this will increase the reliability of the predicted
concentrations. If they do not coincide, the test sample behaves
as an outlier because of, for example, elution time shift or peak
broadening. Model underfitting can also be detected with this plot.

The second method is a variation of the previous one, but focuses
on how the prediction is calculated. It is based on the idea of the net
analyte signal (NAS), [24] that is the part of the measured response
that is used for prediction. The NAS of analyte k can be calculated

for both the calibration sample and the test sample as

R̂
∗
c = PHR̂cPY (11)

R̂
∗
t = PHR̂tPY (12)
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here R̂c and R̂t are the peaks recovered from the calculated pro-
les:

ˆ c = Ĥ�̂Ŷ
T

(13)

ˆ t = Ĥ�̂Ŷ
T

(14)

ith �̂ + ˛�̂ = I and PH and PY are the projection matrices defined
s

H = I − Ĥ−kĤ
+
−k (15)

Y = I − Ŷ−kŶ
+
−k (16)

here Ĥ−k and Ŷ−k are Ĥ and Ŷ without the column of analyte
. PH projects the columns of the peak onto the subspace that is
rthogonal to the subspace spanned by Ĥ−k (the profiles of the
nterferences). Hence, at every wavelength, only the part of the
lution profile of analyte k that cannot be described as a linear com-
ination of the profiles in Ĥ−k remains. This signal is unique for the
nalyte and can be used for quantification. Similarly, the columns
f Ŷ−k span the subspace of the spectra of the interferences. PY
rojects the rows of the peak onto the subspace that is orthogonal
o the subspace spanned by Ŷ−k. At every retention time, only the
art of the spectrum of analyte k that is not a linear combination
f the spectra in Ŷ−k remains. Note that PH and PY are also valid
f Ĥ−k and Ŷ−k are not the pure profiles of the interferences but a
inear combination of them because they span the same vectorial
ubspace.

R̂
∗
c and R̂

∗
t have rank 1 and are proportional

ˆ ∗
t = ĉt

cc
R̂

∗
c (17)

o that the predicted concentration ĉt can be found by inserting the
nown concentration of the standard cc in the previous equation.
he NAS cannot be used to detect outliers because R̂

∗
c and R̂

∗
t are

alculated from Ĥ and Ŷ only and any deviations from trilinearity
re already embedded in Ĥ and Ŷ. However, replacing in Eqs. (11)
nd (12) the fitted R̂c and R̂t by the measured peaks:

∗
c = PHRcPY (18)

∗
t = PHRtPY (19)

ives the part of the measured peaks that is orthogonal to the space
panned by the interferences. This part includes the NAS plus the

rojection of the error:

∗
c = PH(R̂c + Ec)PY = R̂

∗
c + E∗

c (20)

∗
t = PH(R̂t + Et)PY = R̂

∗
t + Ê

∗
t (21)

Fig. 1. (a) Simulated elution profiles. (b) Simulated normalized
3 (2011) 1147–1157

If Rc and Rt are trilinear and the sufficient number of factors has
been selected, E∗

c and E∗
t will be random and small, and R∗

t and R∗
c

will be almost proportional because the NAS signal will dominate
in Eqs. (20) and (21). If Rc and Rt are not trilinear, E∗

c and E∗
t will be

larger and different, and the difference between R∗
t and R∗

c will be
systematic. This difference can be easily observed from the SVD of
R∗

t and R∗
c.

R∗
c = UcScVc

T + Ec (22)

R∗
t = UtStVt

T + Et (23)

By defining ut, uc, vt, vc as the first column of Ut, Uc, Vt and
Vc, respectively, if data are trilinear, ut and uc should coincide, and
vt and vc should coincide. This gives confidence to the predicted
concentrations. Otherwise, the test sample peak Rt can be flagged
as an outlier.

The use of these diagnostics is commented below for two cases:
(a) when data are trilinear, (b) when the lack of trilinearity is due
to time shift.

3. Experimental

3.1. Simulations

Eqs. (1) and (2) were used to simulate a pure chromatographic
peak for the standard (Rc) and an overlapped peak for the test
sample (Rt). The elution profiles (X) and normalized spectra (Y)
are shown in Fig. 1. Rc was simulated with diag(Cc) = [1.5 0 0]
where diag means the elements in the diagonal. This is a pure
peak with the analyte at concentration 1.5. Rt was simulated with
diag(Ct) = [1 1 0.5]. This peak contains the analyte at concentration
1, an overlapped interference and a small baseline drift. Note that
Rc and Rt fulfill the trilinearity requirement because X and Y are
the same. To simulate retention time shift, a new Rt was calcu-
lated with the same Y and Ct as the previous Rt but with profiles
in X centered at three time steps earlier. Considering that in the
chromatograms described in the measured data section, a spec-
trum was recorded every 0.4 s, three time steps correspond to 1.2 s.
Such time shifts, and even larger, are possible in routine mea-
surements especially for compounds with large retention times.

White noise (0.1% in relation to the maximum of the peak) was
finally added to every simulated matrix. Fig. 2 shows the trilin-
ear peaks of the calibration standard Rc and of the test sample Rt.
The shifted peak (not shown) looks like Rt but three time steps
earlier.

spectra. (−) Analyte, (− −) interference, (�−�) baseline.
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Fig. 2. (a) Simulated calibration stan

.2. Measured data

Data from a previous study was used. The objective is the deter-
ination of 4-nitrophenol in a river water sample from the Ebre

iver (Spain). The experimental details are described in Ref. [16].
riefly, a river water sample free of 4-nitrophenol (the original
tudy included also other analytes) was collected and spiked at
.01 ppb of 4-nitrophenol to produce a test sample. The calibra-
ion standard was another aliquot of that water sample spiked a
.07 ppb of the analyte. The samples were submitted to HPLC-DAD
nalysis after solid-phase extraction (SPE). Sample chromatograms
re plotted in Fig. 3 in Ref. [16].

All calculations were performed with subroutines made in
ouse for Matlab (MathWorks, MA, USA).

. Results and discussion

.1. Simulations

The system Rc and Rt represents a probable quantification sit-
ation: Rc is a pure peak of the analyte (easily available from a
ure standard, probably one of the standards used for univariate
alibration) and Rt is the peak of the analyte in the test sample
hat unexpectedly coeluted with an interference. A small base-
ine drift has also been added. The optimal model dimensionality
or this system is three because there are three systematic con-

ributions (analyte, interference and baseline). Fig. 3 shows the
stimated elution profiles (Ĥ) and the normalized spectra (Ŷ), Eqs.
6) and (7), for the three-factors model. The spectrum of the ana-
yte coincides with the underlying spectrum in Fig. 1(b). The elution
rofile of the analyte coincides with the source profile (Fig. 1(a))

ig. 3. Trilinear simulated data. GRAM model with three factors. (a) Estimated elution pr
aseline.
eak. (b) Simulated test sample peak.

multiplied by the concentration in the sum matrix R, i.e., 2.5.
The recovered profiles and spectra of the interference and of the
baseline are different than those used for simulation. This is to
be expected because in GRAM, when two or more constituents
have the same ratio of concentrations between the standard and
the test sample, their columns in Ĥ and Ŷ may be linear combi-
nations of the true underlying profiles. This happens here with
the interference and the baseline. They are both in Rt but not in
Rc.

The first outlier test compares the elution profiles for the analyte
k in Ĥc and Ĥt. In this case, the normalized profiles are not shown
because they coincide among them, and are also equal to the nor-
malized profile in Fig. 3. This indicates that the peak of analyte
satisfies the trilinearity condition.

Fig. 4(a) and (b) shows matrices R∗
c and R∗

t , that contain the part
of the signal in Rc and Rt that is orthogonal to the profiles of the
interference and the baseline. This orthogonal signal includes the
NAS of the analyte of interest in both modes plus the projected
noise. Since noise is low and Rc and Rt are trilinear, E∗

c and E∗
t are

also small so R∗
c ≈ R̂

∗
c and R∗

t ≈ R̂
∗
t . Hence, noise apart, R∗

t and R∗
c

are proportional if Rc and Rt are trilinear. The proportionality can
be checked by approximating R∗

c and R∗
t by their first right and left

singular vectors, R∗
c ≈ uc sc,1 vc

T and R∗
t ≈ ut st,1 vt

T (Eqs. (22) and
(23)). uc is the normalized version of the net elution profile at each
wavelength in R∗

c and vc is the normalized version of the net spectral
profile at each retention time in R∗

c. Similarly, ut and vt are the

common net elution profile and net spectral profile in Rt . Since Rc
and R∗

t are proportional, uc and ut coincide (Fig. 4(c)), and vc and vt

coincide (Fig. 4(d)). This indicates that the trilinearity requirement
is fulfilled and gives confidence to the predicted concentration, that
in this case was 1.00.

ofiles Ĥ (b) Estimated normalized spectra Ŷ. (−) Analyte, (− −) interference, (�−�)
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ig. 4. Trilinear simulated data. (a) Orthogonal signal for the analyte of interest in th
ample peak R∗

t (c) Left singular vectors uc and ut from R∗
c and R∗

t (d) Right singular

Fig. 5(a) and (b) shows the predicted profiles when Rt suffers
rom time shift. Since the spectral mode is not affected by time
hift, the spectrum of the analyte is recovered correctly and coin-
ides with the one used for simulation. On the other hand, the time
ode is affected by time shift, and the underlying elution profiles
n Rc and Rt do not coincide. Despite this, the recovered elution
rofile of the analyte seems correct (positive and unimodal) except
or some small negative values from time step 35 to 50 that could
e attributed to a baseline variation in the recorded peak and be

gnored. In other words, the visual inspection of the recovered elu-

ig. 5. Time shifted simulated data. GRAM model with three factors. (a) Estimated eluti
�−�) baseline.
bration standard peak R∗
c (b) Orthogonal signal for the analyte of interest in the test

rs vc and vt from R∗
c and R∗

t .

tion profile and spectrum of the analyte would not warn that Rt is
an outlier. The elution profiles and spectra of the interference and
baseline can neither be used to detect this problem. The negative
part in the spectrum of the interference could be due to the fact that
these profiles are linear combinations of the true underlying pro-

files so these deviations from the ideal shape should not be taken
into account. For this system, the predicted concentration was 1.14,
a 14% error that would pass unnoticed.

Fig. 6 shows the elution profiles for the analyte of interest in
Ĥc, Ĥt and Ĥ. The difference between them indicates that the test

on profiles Ĥ. (b) Estimated normalized spectra Ŷ . (−) Analyte, (− −) interference,



J. Ferré, E. Comas / Talanta 8

F

s
p
f
t
R
s
R
a

outlier diagnostics, however, will flag the sample as an outlier.

F
s

ig. 6. Normalized elution profile of the analyte in Ĥc (−), Ĥt (− −) and Ĥ (�−�).

ample is an outlier. Note how the profile Ĥ is a compromise of the
rofiles in Ĥc and Ĥt. The outlying situation can also be detected
rom the plots of the orthogonal signal. Since the underlying elu-
ion profile of the analyte in Rc is not aligned with its profile in

t, each profile has a different part that is orthogonal to the space
panned by the profiles of the interference and the baseline. Hence,
∗
c and R∗

t (Fig. 7(a) and (b)) are no longer proportional (noise
part) and one surface is shifted in time with respect to the other.

ig. 7. Time shifted simulated data. (a) R∗
c , (b) R∗

t . (c) The difference between the left sin
ingular vectors vc and vt from R∗

c and R∗
t .
3 (2011) 1147–1157 1153

This can be better observed because the singular vectors uc and
ut are different (Fig. 7(c)), so Rt is flagged as an outlier. Note that
the orthogonal contribution in the spectral mode is not affected
because the time shift did not affect the spectra (Fig. 7(d)). After
Rt has been flagged as an outlier, a time shift correction algorithm
could be used, that would reveal a shift of three time steps. Correc-
tion of this shift would lead to the results discussed in the previous
section.

4.2. Measured data

Fig. 8 shows the peaks of 4-nitrophenol in the standard and in
the test river water sample. The SVD of each peak separately indi-
cated that the peaks were not pure so quantitation with GRAM was
justified. Fig. 9 shows the chromatographic profiles and spectra
estimated by the GRAM model with three factors. The estimated
spectrum of the analyte perfectly matches the spectrum recorded
for 4-nitrophenol in a pure standard. This is used to identify what
of the three elution profiles corresponds to the analyte. The other
two spectra seem reasonable although they could be linear com-
binations of the true spectra. The elution profile of the analyte is
unimodal and mostly positive and seems correct. The agreement of
the spectrum and the satisfactory elution profiles could suggest, at
a first glance, that the prediction, that is 0.91 ppb, is reliable. The
Fig. 10(a) shows the elution profile of the analyte of interest
in Ĥc, Ĥt and Ĥ. The separation between the profiles in Ĥc and Ĥt

indicate that Rt is an outlier. Note also that the profile in Ĥ is more
similar to the profile in Ĥc than the profile in Ĥt. This is because ˛ = 1

gular vectors uc and ut from R∗
c and R∗

t highlight the time shift problem. (d) Right
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Fig. 8. River water sample. (a) Measured 4-nitrophenol in the standard. (b) Measured 4-nitrophenol in the test sample.

F rofiles
t

w
n
b
t
t
w
F
b
m
t

ig. 9. River water sample. GRAM model with three factors. (a) Estimated elution p
he analyte obtained by measuring a pure standard of 4-nitrophenol.

as used in Eq. (3). Hence, Rc (that is much larger than Rt) domi-
ated in the sum matrix R and in the SVD in Eq. (4). If ˛ = 0.1 had
een used, the profile in Ĥ would be more similar to the profile in Ĥt

han to the profile in Ĥc. R∗
c and R∗

t in Fig. 11(a) and (b) also lead to
he conclusion that Rt is an outlier. Note that one surface is shifted
ith respect to the other. The fact that uc and ut do not coincide in
ig. 11(c) confirms this. Again, the spectral mode was not affected
y time shift and the singular vectors of R∗

c and R∗
t for the spectral

ode, vc and vt, agree. The time shift was corrected by moving the
ime window of Rt in the chromatogram of the test sample one unit

Fig. 10. Normalized elution profile of 4-nitrophenol in Ĥc (−), Ĥt (− −) and Ĥ (•−•)
Ĥ. (b) Estimated normalized spectra Ŷ . The (×) indicate the reference spectrum of

a time until the calculated profiles agreed. Other algorithms, such
as the one by Prazen et al. [13] could also be used. Fig. 12 shows
the elution profiles and spectra estimated by GRAM after the time
window for Rt had been shifted six time steps with respect to the
time window in Rc. Again, the profile of 4-nitrophenol seems cor-
rect and its spectrum perfectly matches the reference spectrum of

this analyte. Fig. 10(b) now shows that the elution profiles for the
analyte of interest in Ĥc, Ĥt and Ĥ agree. The surfaces of R∗

c and
R∗

t in Fig. 13(a) and (b) are now similar, which is confirmed by the
match between uc and ut (Fig. 13(c)). These plots suggest that the

for the raw measured data (a) and after correcting the retention time shift (b).
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Fig. 11. River water sample (a) R∗
c , (b) R∗

t . (c) Left singular vectors uc

rilinearity has bee improved and give confidence to the predicted
oncentration, that was 1.04 ppb. This value was very close to the
nown spiked amount 1.01 ppb. This result was considered accept-
ble taking into account the dispersion of the results that the SPE
tep can produce.

An additional plot can be derived from the projected matrices.
ig. 14 shows the scatter plot of vec(R∗

t ) versus vec(S∗), where S* is
he net sensitivity for analyte k defined as the NAS at unit concen-∗

ration, S∗ = R̂c/cc. The slope of the least-squares fitted line in this
lot is the predicted concentration. Fig. 14(a) corresponds to the
riginal, non-trilinear data. Time shift makes R∗

t not be a multiple
f S*, and the residuals are large and systematic. After correcting
he time shift (Fig. 14(b)), the residual are much smaller and the

ig. 12. River water sample after correcting the time shift. GRAM model with three fact
ndicate the reference spectrum of the analyte obtained by measuring a pure standard of
t from R∗
c and R∗

t . (d) Right singular vectors vc and vt from R∗
c and R∗

t .

dispersion is mainly due to the noise in the data, which increases
the reliability of the predicted concentration.

The indicated plots can be also used to detect other sources of
non-trilinearity such as peak broadening. Peak broadening (i.e., the
peak of the analyte in test sample is aligned with the peak of the
standard but it is not a multiple of it) also increases prediction error,
but usually less than time shift because the shape of the elution
profile of the analyte does not vary excessively from one run to the

other. This case, although not shown here, can be detected with
the same reasoning than retention time shift. If the profile of the
analyte of interest in Rc is different than in Rt, then Ĥc, Ĥt and Ĥ
will not coincide, R∗

c and R∗
t will not be proportional and Rt will be

flagged as an outlier.

ors. (a) Estimated elution profiles Ĥ. (b) Estimated normalized spectra Ŷ . The (×)
4-nitrophenol.
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ig. 13. River water sample after correcting the time shift. (a) R∗
c , (b) R∗

t . (c) Left sing

A similar behavior can also be observed in these plots when Rt

s not an outlier but the model is underfitted i.e., the GRAM model,
q. (4), is calculated with less factors than needed. In an underfit-
ed model, Ĥ and Ŷ do not span the row and column spaces of Rc

nd Rt correctly. Hence, the calculated profiles often lack meaning
r it is difficult to recognize the spectrum of the analyte in Ŷ. This

s a warning for checking the GRAM model and see whether this

as caused by a shift in the elution profile (i.e., Rt is an outlier)
r underfitting. Sometimes, however, the spectrum of the target
nalyte can be identified in Ŷ despite the model being underfitted.

ig. 14. River water sample. vec(R∗
t ) versus vec(S∗). (a) Before correcting the time shift.

redicted concentration.
ectors uc and ut from R∗
c and R∗

t . (d) Right singular vectors vc and vt from R∗
c and R∗

t .

This may happen, for example, when the contribution of one the
components in Rt is low. In that case, the analyte may be (erro-
neously) quantified. The proposed plots display that situation. If
the profile of the analyte has been identified, matrices Ĥ−k and Ŷ−k

can be constructed with the remaining columns of Ĥ and Ŷ. In that
case, PH and PY will not completely remove the contribution of the

interferences, R∗

c and R∗
t will not be proportional (up to the noise

level) and the plot vec(R∗
t ) versus vec(S∗), will reveal this situation.

Overfitting, on the other hand, does not increase prediction error
as much as underfitting does. Usually adding an extra factor leaves

(b) After correcting the time shift. In both cases, the slope of the fitted line is the
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he existing profiles mostly unchanged and adds a new one that
ccounts for noise, or one of the existing profiles is split in two
imilar profiles because of small data inconsistencies (for example,
light non-linearity or variation of the peak shape). Note, for exam-
le, that the GRAM model for 4-nitrophenol, after correcting the
hift, has two elution profiles with a very similar spectrum. This
ay be indicating that the main sources of variation are two and

hat the third profile was forced to come out because the model
as calculated with three factors. In fact, a GRAM model calculated
ith only two factors yields a very similar profiles and spectra than

he model with three factors, and the prediction hardly changed
1.04 ppb). Finally, note that although slight overfitting may not
ffect the prediction, adding more factors than needed decreases
he NAS and decreases the signal-to-noise ratio because the NAS

ust be orthogonal to more profiles. Hence, it is important to use
he best number of factors.

. Conclusions

Outlier detection diagnostics are needed for the routine appli-
ation of GRAM. In HPLC-DAD analysis, retention time shift and
eak broadening are two important sources of outliers. Although
ualitative analysis may still be possible because the spectral
ode is not affected by the lack of trilinearity, quantitative

nalysis may be seriously affected. Several tools for the detec-

ion of unreliable predictions have been presented. From them,
ime shift, peak broadening and underfitting can be detected. It
s a good practice to monitor these plots for different number
f factors in the GRAM model before the quantitative result is
eleased.
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